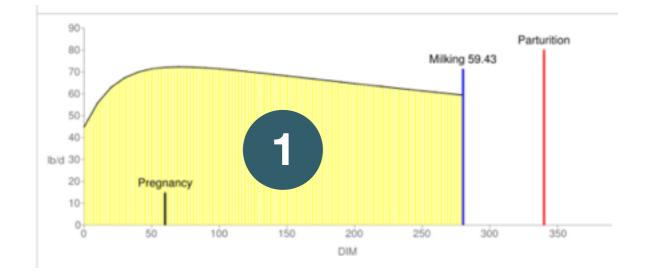


Tools for Making Economic Reproductive Decisions

Victor E. Cabrera


University of Wisconsin-Madison Dairy Science

DAIRY CATTLE REPRODUCTION COUNCIL, 2015 ANNUAL MEETING, NOVEMBER 12-13, 2015 • BUFFALO, NEW YORK

Take home messages

1. Critical decision making can be assisted by DST 2. DST available at DairyMGT.info→ Tools→Reproduction

- 3. Exploring the Time of Pregnancy → best time of pregnancy
- 5. UW-Cornell DairyRepro\$ analyzes specific reproductive programs
- 4. Premium Beef on Dairy Program evaluates use of beef semen
- 6. Economic Value of a Dairy Cow calculates both: value of a cow and cow's net return

EXTENSIO University of Wisconsin-Exter	
	Cornell University Department of Animal Science
Wis	sconsin-Cornell Dairy Repro\$ (UWCURepro\$) Version 1.3.5.0
Developed By:	
Afshin S. Kalantari, J	Julio O. Giordano and Victor E. Ca

	1			a Dairy Cow	
		V.E. Cabrera	, UV	viry Science	
English	Spanish		4	Units: US English US Metric Help !	UK
Overview	Single Cow Analysis	Herd Analysis			
INPUTS - I	Edit Values in This Block	ι.		OUTPUTS - Interactive Results	
Evaluated	Cow Variables			Value of the Cow, \$	
Current Las	ctation		3 0	Compared Against a Replacement, \$	
Current Mo	onths after Calving		5 0	Milk Sales, \$	1
Current Mo	onths in Pregnancy		1 0	Feed Cost, \$	-1
Expected M	Allk Production Rest of L	actation, %	100	Call Value, \$	
Expected M	Allk Production Next Lac	ations, %	100	Non-reproductive Cull, \$	-1
Replacem	ent Cow Variable			Mortality Cost, \$	
	enetic improvement, % :	whiteonal milk		Reproductive Cull, \$	
Expected §	penetic improvement, 94 a	Jobional mik	0	Reproduction Costs, \$	
Herd Prod	uction and Reproductio	n Variables		Replacement Transaction, \$	2
Herd Turno	ver Ratio, %/year		35	Herd Structure at Steady State	
Rolling Her	d Average, lb/cow per ye	ar	24,000 \$	Days in milk	2
21-d Pregn	ancy Rate, %		18 \$	Days to Conception	1
Reproducti	ion Cost, \$/cow per mont	h	20	Percent of Pregnant	
Last Month	After Calving to Breed a	Cow	10 0	Reproductive Culling, %	
	ed Cow Minimum Milk, I		50	Mortality, %	
	Loss after 35 Days Pregr	vant, %	22.6	1st Lactation, %	
Average Co	ow Body Weight, Ib		1306	2nd Lactation, %	
Herd Econ	omic Variables			>= 3rd Lactation, %	
Replaceme	ent Cost, \$/cow		1300	Economics of an Average Cow, \$/year	r
Salvage Va	lue, \$/Ib live weight		0.38	Net Return, \$	19
Calf Value,			100	Milk Sales, \$	36
Milk Price,	\$/cwt		15.88	Feed Cost, \$	-16
Milk Butter	fat, %		3.5	Calf Sales, \$	
Feed Cost	Lactating Cows, \$/lb dry	matter	0.1	Non-Reprod. Culling Cost, \$	-1
Feed Cost	Dry Cows, \$/lb dry matte	r	0.08	Mortality Cost, \$	
	te, %/year		6	Reproductive Culling Cost, \$	

-80

Reproductive Cost, \$

Interest Rate, %/year 6

Male and Female Calves by Se	emen Type				2	
	conv	entional		sexed		beef
	Male	Female	Male	Female	Male	Ferr

Acknowledgments

Copyright © Protected

This project was supported by Agriculture and Food Research Initiative Competitive Grant no. 2010-85122-20612 from the USDA National Institute of Food and Agriculture.

This research was also supported by Hatch project to V.E.C. WIS01577.

	cor	conventional		sexed		beef	
	Male	Female	Male	Female	Male	Female	
Calf value, \$	50	150	50	150	180	180	
Calves, #	42	37	32	286	30	0	323
Return, \$	2,084	5,543	1,590	42,939	5,325	0	57,481
Semen cost, \$	2,880		15,792		1,491		20,163
Eartag cost, \$	21	18	16	143	89	0	287
				NET RETUR	N, \$		37,031

DST to support decision-making

Economic simulation research has proven to be effective

Cabrera, 2014

DST can become essential for dairy farm strategic management

Cabrera, 2012

Research labs are making available DST for repro management

UF, Penn State, UW-Madison, etc.

UW-Madison Dairy Management (DairyMGT.info) has been active in DST for report management Cabrera, 2012

DairyMGT.info Large collection of DST for dairy reproductive economic analysis

Additional information

- **Projects** Θ
- **Publications** Θ
- Presentations Θ
- Links Θ

Core of DairyMGT.info

Tools UW - Dairy Science to Support Milk Quality **UW Dairy Nutrient** Decision makin On the Profitability

This site is designed to support dairy farming decision-making focusing on model-based scientific research. The ultimate goal is to provide user-friendly computerized decision support tools to help dairy farmers improve their economic performance along with environmental stewardship.

University or wisconsin

University of Wisconsin - Madison UW - Cooperative Extension Dairy Cattle Reproduction **Dairy Cattle Nutrition**

Latest Projects

Improving Dairy Farm Sustainability Genomic Selection and Herd Management Dairy Reproduction Decision Support Tools Strategies of Pasture Supplementation Improving Dairy Cow Fertility

Contact

Associate Professor Extension Specialist in Dairy Management 279 Animal Sciences 1675 Observatory Dr. Madison, WI 53706 (608) 265-8506 vcabrera@wisc.edu

Victor E.Cabrera, Ph.D.

in 👭 RG 😵

More +

Helpful Link

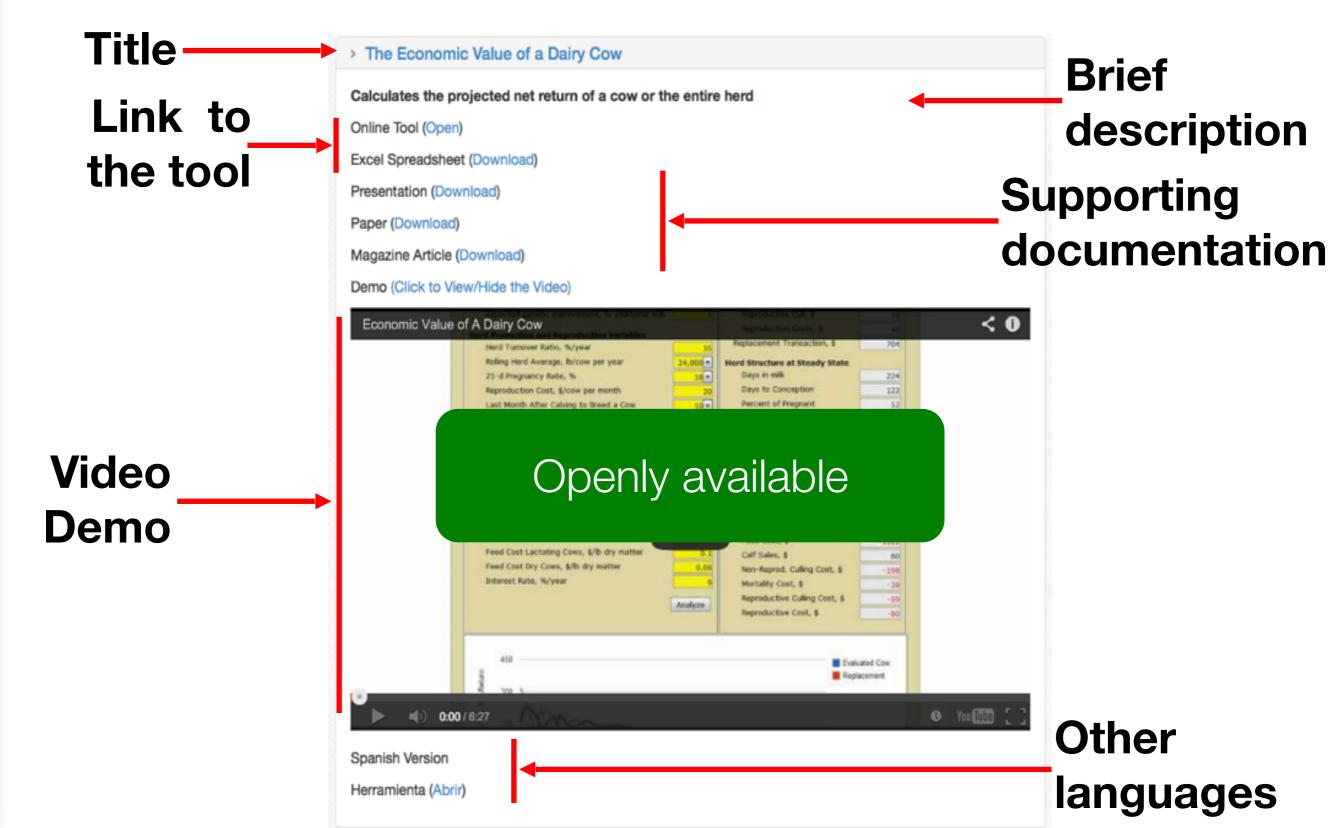
Repro Money Program

DairyMGT.info: Tools

>40 DST to support dairy farm management

Many areas of dairy farm management

- Feeding
- Heifers
- Reproduction
- Production
- Replacement
- Environment
- Finances
- Genomics
- Health
 - •••

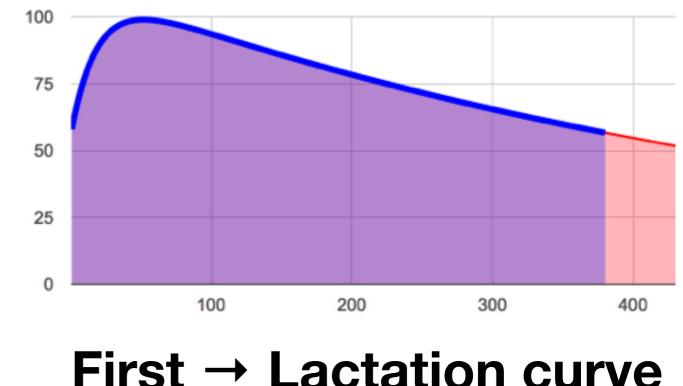

Tools

A collection of the state-of-the-art and scientific-based dairy farm management decision support tools that are user-friendly, interactive, robust, visually attractive, and self-contained. These tools count with associated documentation and video demonstrations. Technical support on their application is also available upon request.

Environment

- Dairy Nutrient Manager
- Grazing-N: Application that Balances Nitrogen in Grazing Systems
- Seasonal Prediction of Manure Excretion
- > Dynamic Dairy Farm Model
- Least Cost Optimizer
- LGM-Dairy Premium Sensitivity
- Return to Labor
- > Estimate Your Mailbox Price
- > LGM Dairy Feed Equivalent Calculator
- Net Guarantee Income Over Feed Cost for LGM-Dairy

Anatomy on each DST How to explore and use them


Exploring Best Pregnancy Time

Pregnancy time → large determinant of economic value

It depends on the magnitude and shape of the lactation curve

Farmers, consultants, and researchers understand this economic principle

Calculating its real economic value → not straightforward

Milk Curve Fitter

A number of traits define cow (herd) **lactation curves**

Observed vs. predicted data points for 12 milk test records

Parameter

а

b

Value

112.3355

18.9885

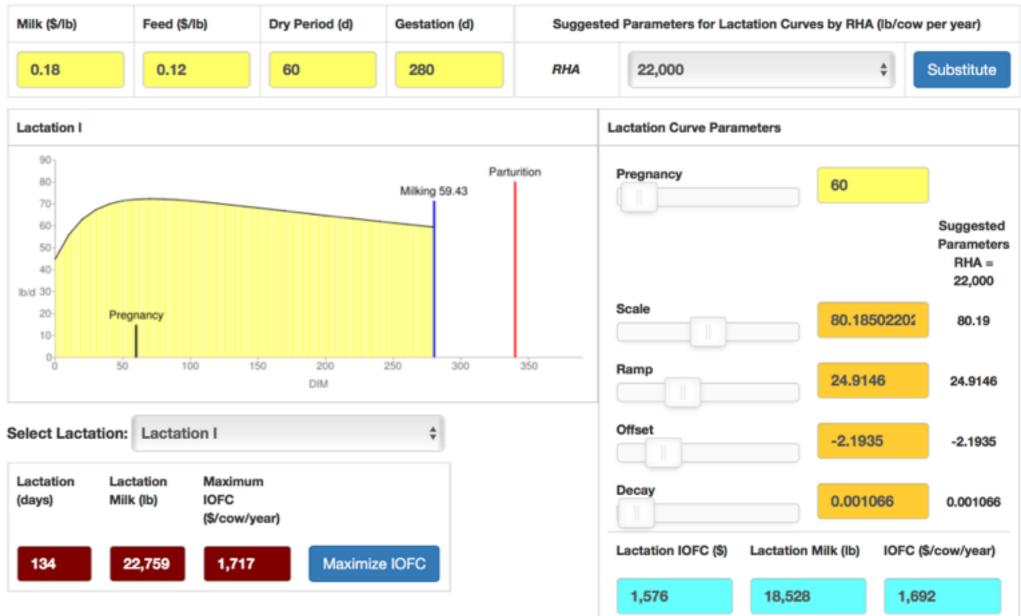
MilkBot's model (Ehrlich, 2011)

Cabrera, 2014

"fit" records to predefined functions

M =

 $M_{DIM} = a \left(1 - \frac{e^{\left(\frac{c-DIM}{b}\right)}}{2}\right) e^{-(d)(DIM)}$


Days Postpartum

Exploring Best Pregnancy Time

Evaluate and maximize IOFC to a pregnancy time

E.g., 134 d pregnancy maximum IOFC = \$1,717/cow.yr

Pregnant at 60 d = -\$25/cow.yr

Exploring Best Pregnancy Time

Conclusions are largely dependent on the shape and magnitude of the lactation curve

Important to know

cow(herd) specific
 lactation curves

Understand reproductive management in a herd is a much more complex and highly probabilistic process Full assessment requires profound

→ analysis assisted by more sophisticated
 DST

An additional source of revenue → producing beef crossbred?

Companies offering premium for crossbred using beef semen DST analyzes net return of switching inseminations from conventional or sexed dairy semen to beef semen

Premium Beef on Dairy Program

V.E. Cabrera, UW-Madison Dairy Science and G. Lopes, Accelerated Genetics

Male and Female Calves by Semen Type

	con	conventional		sexed		beef	
	Male	Female	Male	Female	Male	Female	
Calf value, \$	50	150	50	150	180	180	
Calves, #	42	37	32	286	30	0	323
Return, \$	2,084	5,543	1,590	42,939	5,325	0	57,481
Semen cost, \$	2,880		15,792		1,491		20,163
Eartag cost, \$	21	18	16	143	89	0	287
				NET RETURN	1,\$		37,031

Calculates the required and produced female calves for herd replacement

Herd size and structure, culling rate, pregnancy risk, number of heifers inseminated with sexed semen, and calf mortality calculate the number of replacements needed to maintain herd size and to determine the number of eligible animals for the beef program

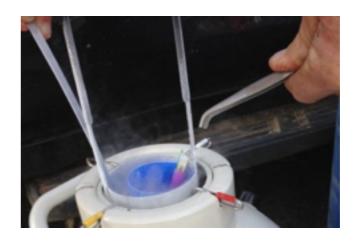
Considers genetic value of animals to be inseminated and the expected premium to be received for crossbred offspring

						Selection an	nd Semen Type		
		# Animals Eligible for Service		Conception	Rate by Semen	Туре	Тор	Bottom	
Collapse	Service	Projected	Adjusted	con	sexed	beef	80	20	
	1st	470		60	48	50	S \$	S \$	
Heifers	2nd	211		45	36	45	S \$	S \$	
Hei	3rd	95		40	32	40	S \$	В \$	
	>3rd	43		35	28	35	S \$	В \$	
_	1st	29		40	32	35	C \$	В \$	
on 1	2nd	23		35	28	33	C \$	в \$	
Lactation 1	3rd	18		30	24	31	C \$	В \$	
Ľ	>3rd	104		25	20	30	C \$	В \$	
	1st	19		35	28	30	C \$	В \$	
on 2	2nd	14		33	26	28	C \$	в \$	
Lactation	3rd	11		30	24	27	C \$	в \$	
Ľ	>3rd	51		25	20	26	C \$	В \$	
8	1st	21		33	26	27	C \$	B \$	
< uo	2nd	16		30	24	26	C \$	В \$	
Lactation >2	3rd	12		27	22	25	C \$	в 🛊	
Ľ	>3rd	49		25	20	24	C \$	В \$	

Male and Female Calves by Semen Type

				_				
	cor	ventional		sexed		beef		
	Male	Female	Male	Female	Male	Female		
Calf value, \$	50	150	50	150	180	180		
Calves, #	57	51	32	286	0	0	337	
Return, \$	2,870	7,635	1,590	42,939	0	0	55,035	
Semen cost, \$	3,874		15,792		0		19,666	
Eartag cost, \$	29	25	16	143	0	0	213	
				NET RETURN,	\$		35,155	

+\$1,876 when using beef semen for 3rd+ service for bottom 20% heifers and bottom 20% all cows


Male and Female Calves by Semen Type

	cor	conventional		sexed		beef	
	Male	Female	Male	Female	Male	Female	
Calf value, \$	50	150	50	150	180	180	
Calves, #	42	37	32	286	30	0	323
Return, \$	2,084	5,543	1,590	42,939	5,325	0	57,481
Semen cost, \$	2,880		15,792		1,491		20,163
Eartag cost, \$	21	18	16	143	89	0	287
	NET RETURN, \$,\$		37,031	

Premium Beef on Dairy Program Critical decision making

Do I have enough replacements available?

•How aggressively can beef semen be used?

What breedings beef semen could be used?

- Heifers or cows
- What services

What cows beef semen could be used •Top

•Bottom

UW-Cornell Dairy Repro\$

Repro performance and associated costs can be easily found ↓

Challenging to fully assess net value of repro management strategies Impacts on reproductive changes

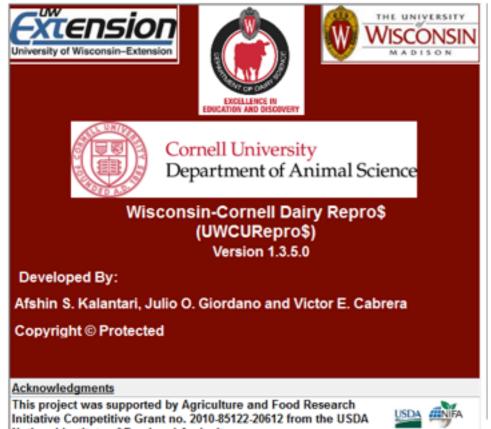
3

+

Impacts on productivity, newborn, replacement, etc. ↓ Net value of a reproductive program

UW-Cornell Dairy Repro\$

Calculates and compares the economic value of dairy reproductive programs


Includes TAI, HD, and combinations of TAI and HD and programs using activity monitors Complex daily Markov chain model that computes the net return of reproductive programs

Giordano et al., 2012

Inputs → productive traits, economic variables, reproductive programs

UW-Cornell Dairy Repro\$

Accommodate very complex reproductive programs mimicking what happens in actual dairy farms

National Institute of Food and Agriculture.

This research was also supported by Hatch project to V.E.C. WIS01577.

What is the value of SPECIFIC reproductive programs?

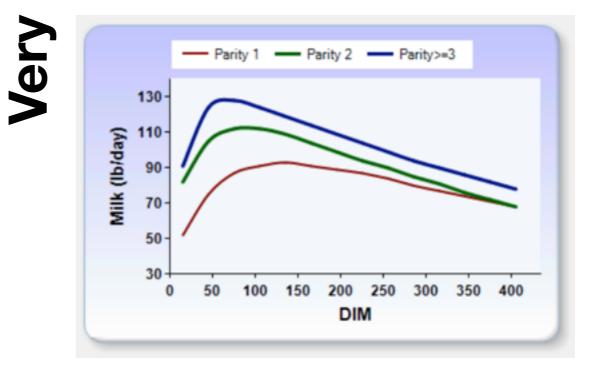
Very sophisticated tool to assess the economics of reproductive efficiency in dairy cattle farm

J. Dairy Sci. 95:5442–5460 http://dx.doi.org/10.3168/jds.2011-4972 © American Dairy Science Association[®], 2012.

A daily herd Markov-chain model to study the reproductive and economic impact of reproductive programs combining timed artificial insemination and estrus detection

J. O. Giordano,¹ A. S. Kalantari, P. M. Fricke, M. C. Wiltbank, and V. E. Cabrera² Department of Dairy Science, University of Wisconsin-Madison 53706

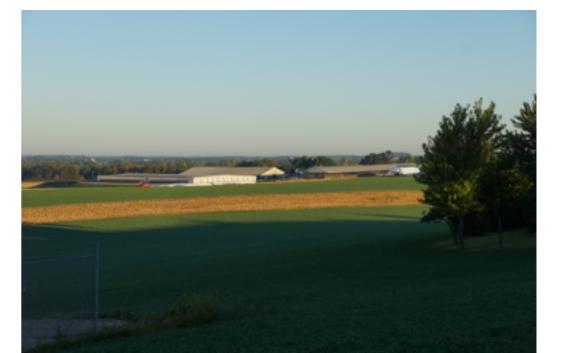
UW-CU Repro\$ General input data

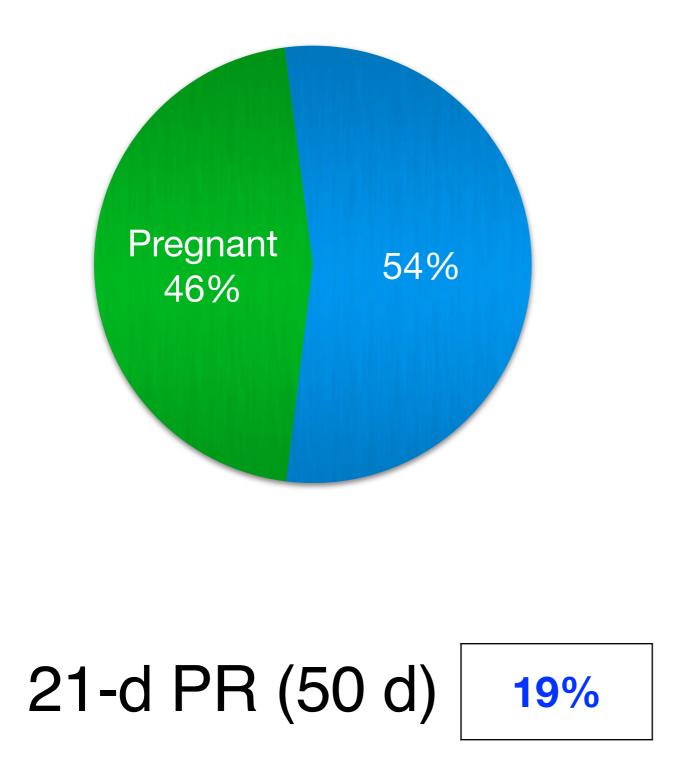

Herd Parameters	
Herd Size (#)	100 🗘
Average Body Weight (lb)	1,400 韋
Involuntary Culling (%/yr)	28.0
Mortality Rate (%/yr)	4.0
Stillbirth (%)	4.9
Economic Parameters	
Milk Price (\$/cwt)	16.00 ≑
Cost Feed Lactating (\$/Ib DM)	0.08
Dry Period Fixed Cost (\$/Ib DM)	0.06
Female Calf value(\$)	136 🜩
Male Calf value (\$)	50 🗘
Heifer Replacement Value(\$)	1,302 韋
Salvage Value (\$/lb)	0.526 🜲

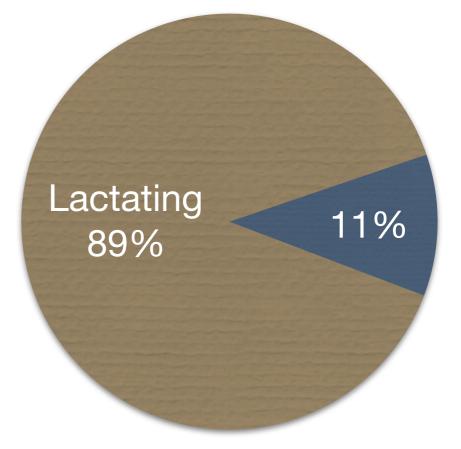
Lactation Courses III/cownest

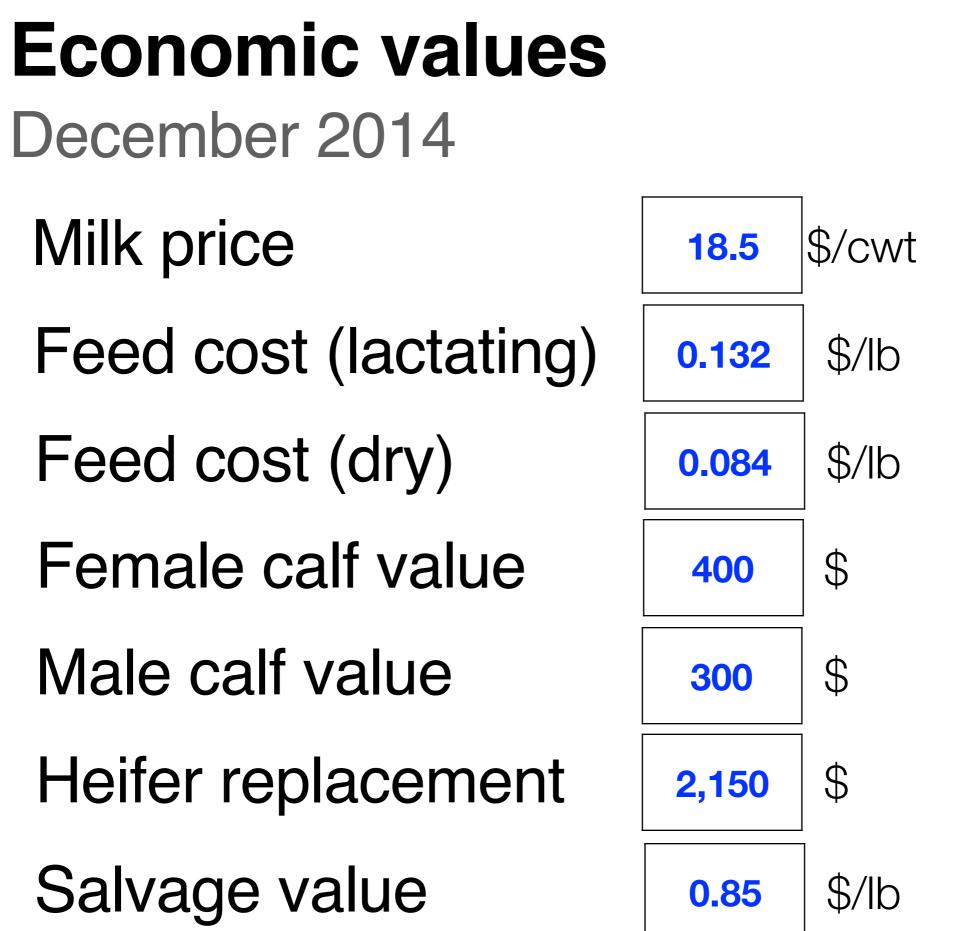
important

Own Farm Lactations (Enter/Edit NUMBERS Below)


DIM	Parity 1	Parity 2	Parity ≥3
15	52	82	91
45	75	105	124
75	87	112	128
105	91	112	124
135	93	109	119
165	91	104	114
195	89	99	109
225	87	94	104
255	84	90	99
285	80	85	94
315	77	81	90
345	74	76	86
375	71	72	82
405	68	68	78


Reproductive Program	ns Curren	t		Altern	native	>
First AI postpartum	Presynch-Ovsynch-14	4	۷	Double-Ovsynch		~
Second and sub. Al	Ovsynch		~	Ovsynch		¥
Resynch before preg check	k	NO	۷		YE	S ∨
Programs Description						
VWP (d)		50	•		50	•
Estrous Cycle Duration (d)		22	•		22	•
Maximum DIM for Breedin	g	300	-		30	0 🗘
Do-not-Breed Minimum Mi	lk (lb/d)	50	-		50	•
DIM first injection for first	Al sync program (d)	36	-		36	-
Weekday first injection		Tuesday	~		Monday	~
Interbreeding interval for	TAI services (d)	42	•		35	-
Heat bred before first TAI s	service (%)	60	•		0	4 ¥
CR heat bred before first T	Al service (%)	30	•		0	-
CR first TAI service (%)		30	•		45	÷
Heat bred after first TAI se	rvice (%)	60	•		60	•
CR heat bred after first TA	l service (%)	30	•		30	•
CR second and subsequen	nt TAI services (%)	28	•		28	-




Case study Farm in Wisconsin Current - December 2014 Alternative - July 2015

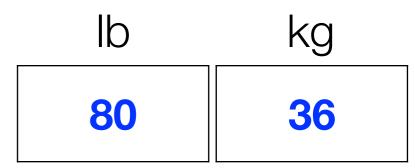
Cows by status Total number of cows in records: 945

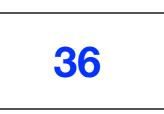
Reproductive program Description of program

- Voluntary waiting period 1st lact, d Voluntary waiting period 2nd+ lact, d
- Estrous duration, d
- Maximum DIM breeding 1st lact, d
- Maximum DIM breeding 2nd lact, d
- Maximum DIM breeding 3rd+ lact, d

40

236


Reproductive program Description of program


Do-not-breed minimum milk/d

DIM first TAI injection, d

Resynch before preg check

Interbreeding interval TAI, d

Reproductive program Description of program

Heat bred before 1st TAI service, %

- CR before 1st TAI service, %
- CR 1st TAI service
- Heat bred after 1st TAI service, %
- CR after 1st HD services, %

CR 2nd+ TAI services

Reproductive program Pregnancy diagnosis

Days in gestation 1st preg check, d

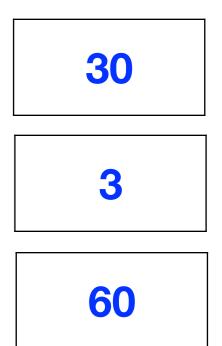
Days in gestation 2nd preg check, d

90

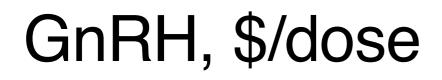
Days in gestation 3rd preg check, d

180

Reproductive program Cost of semen, insemination, & pre check


Semen cost, \$/dose Labor insemination, \$/AI

Ultrasound, \$/hr

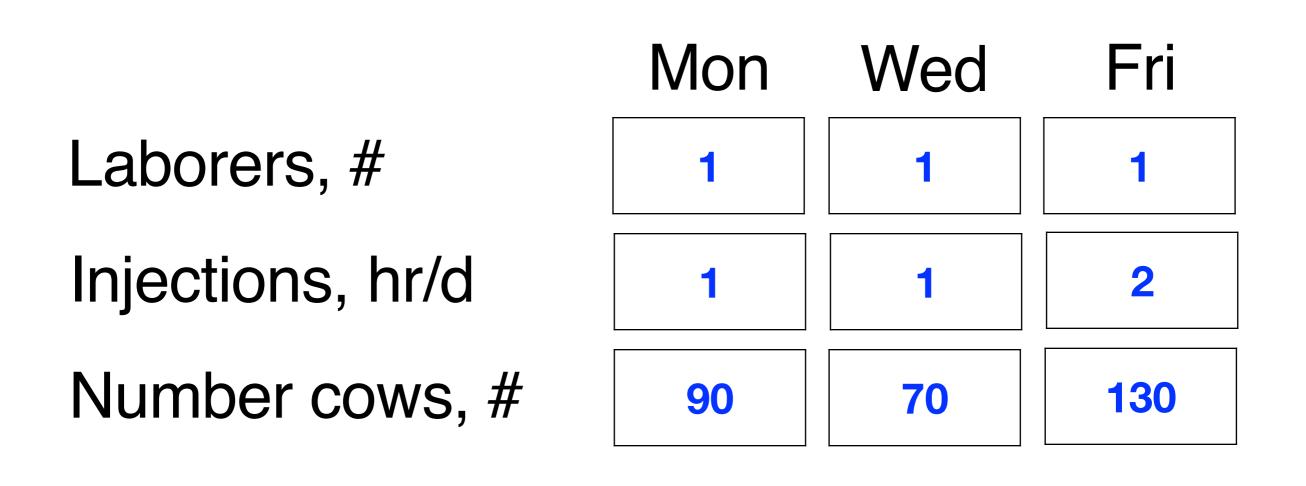

Time used in preg check, hr/d

Number of cows checked, #/d

Reproductive program Synchronization labor and hormones

Labor for injections, \$/hr

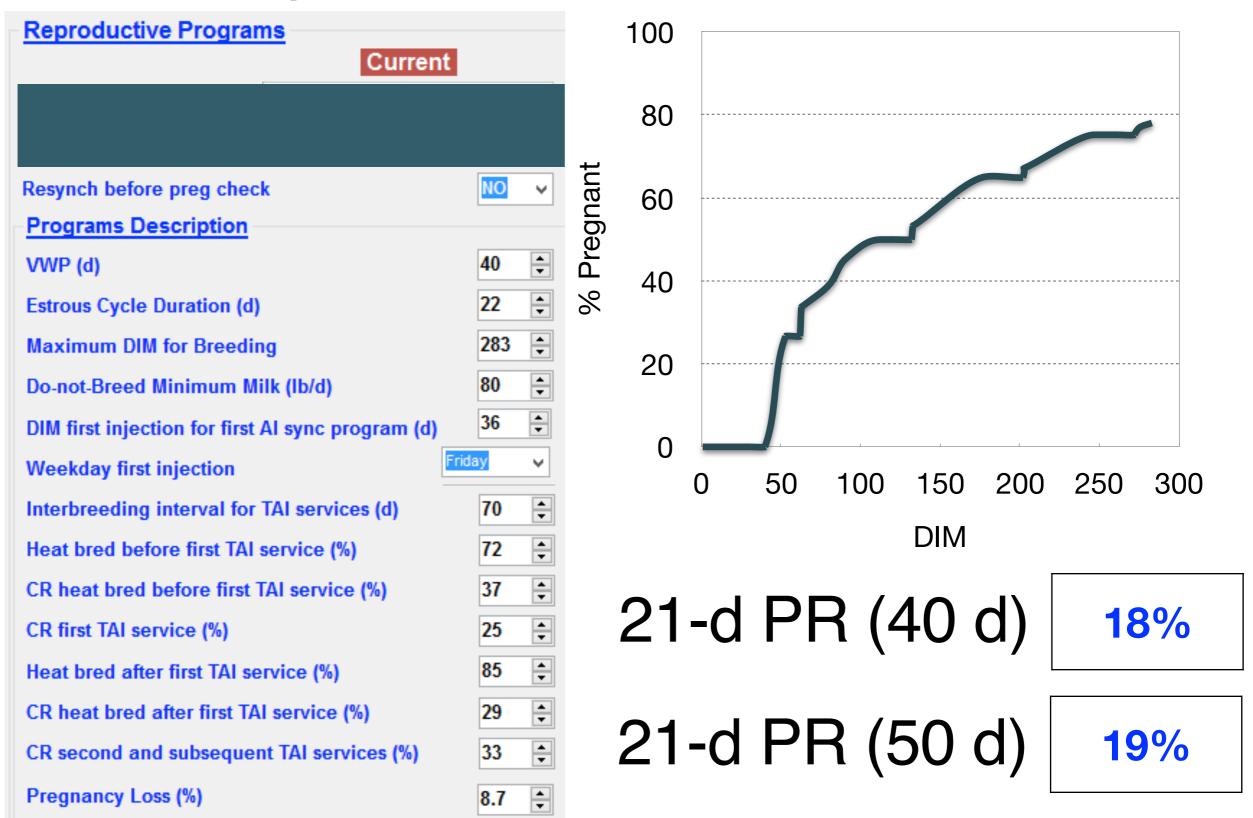
PGF, \$/dose

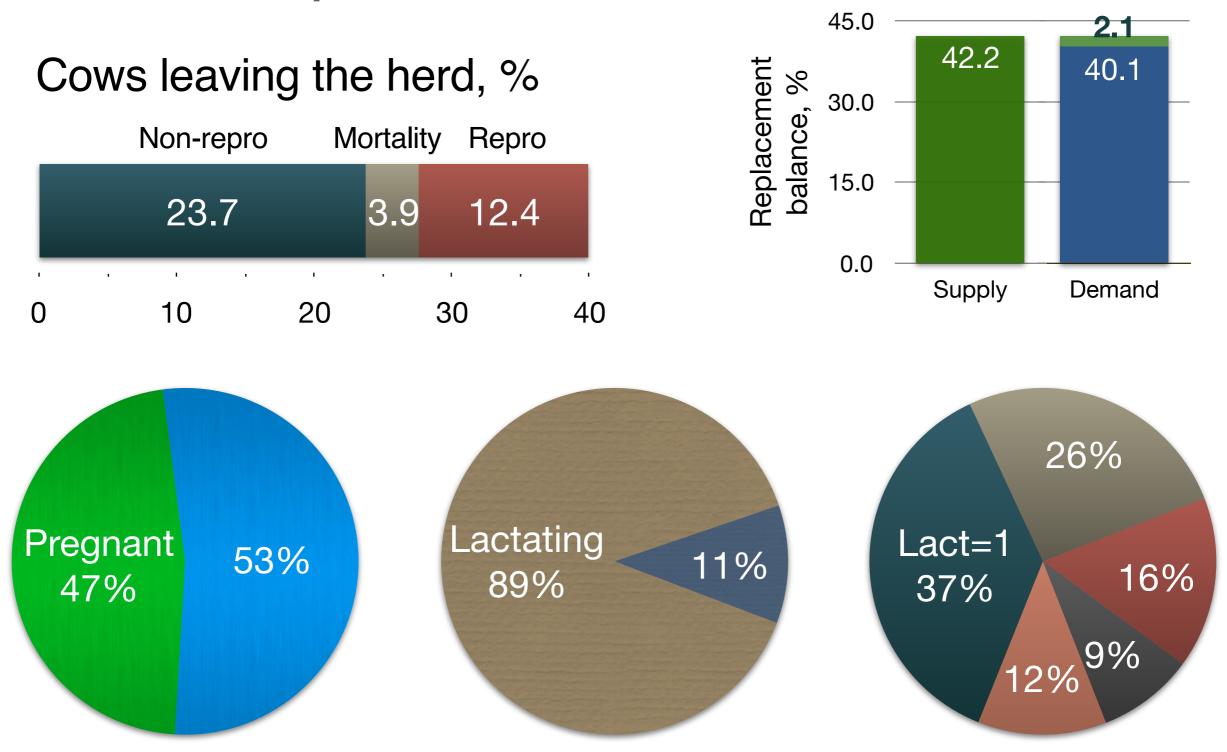


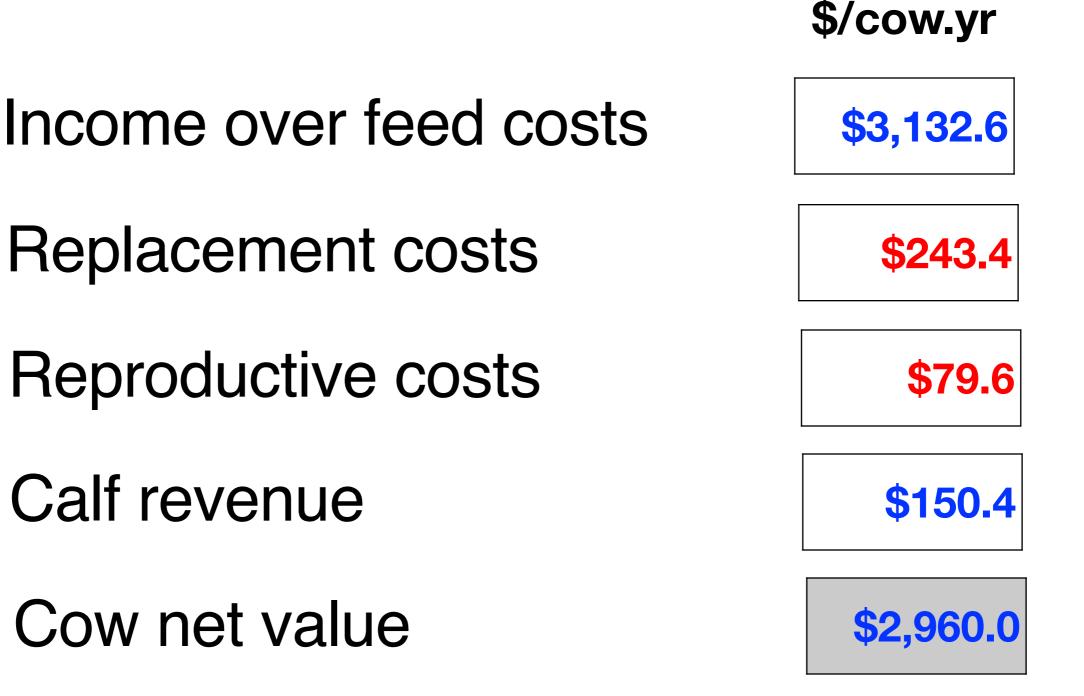
Reproductive program Activity monitors for heat detection

- System cost, \$
- Monitors, #
- Cost per monitor, \$
- Maintenance cost, \$/yr
- Life expectancy, yr
- Salvage value, \$

40,000
990
65
5,200
7
0


Reproductive program Labor for TAI injections


TAI breedings


Reproductive program UWCU Repro\$

Reproductive program UWCU Repro\$

Reproductive program - current Dec14

Management strategy (Alternative) July 2015

Reproductive program Timed Artificial Insemination program

1st TAI service postpartum

2nd+ TAI services

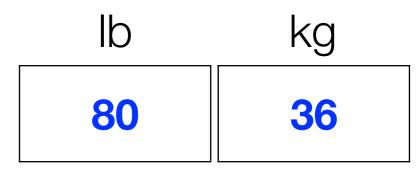
Weekday first injection

Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
					¹ GnRH	
					⁷ PGF	
	¹⁰ GnRH					
	¹⁷ GnRH					
	PGF	²⁵ PGF	²⁶ GnRH	²⁷ TAI		

ouble Ovsynch ¹
Ovsynch
Friday

D

¹Modified


Reproductive program Description of program

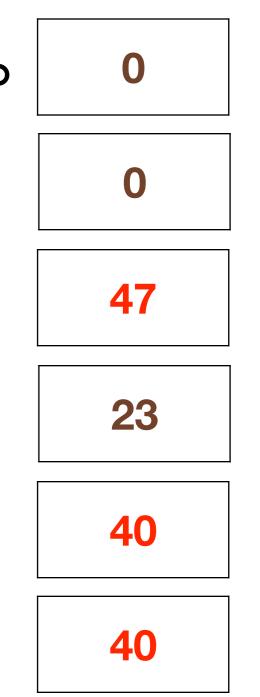
Do-not-breed minimum milk/d

DIM first TAI injection, d

Resynch before preg check

Interbreeding interval TAI, d

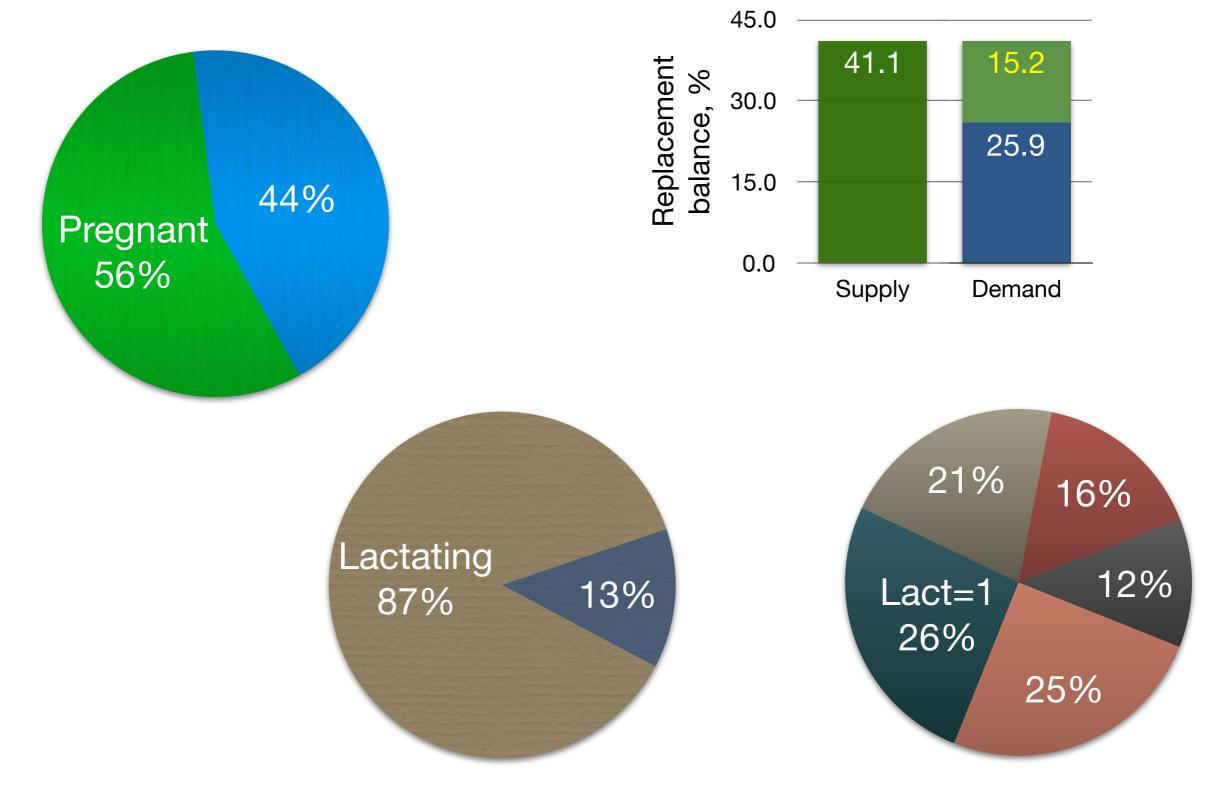
Reproductive program Description of program

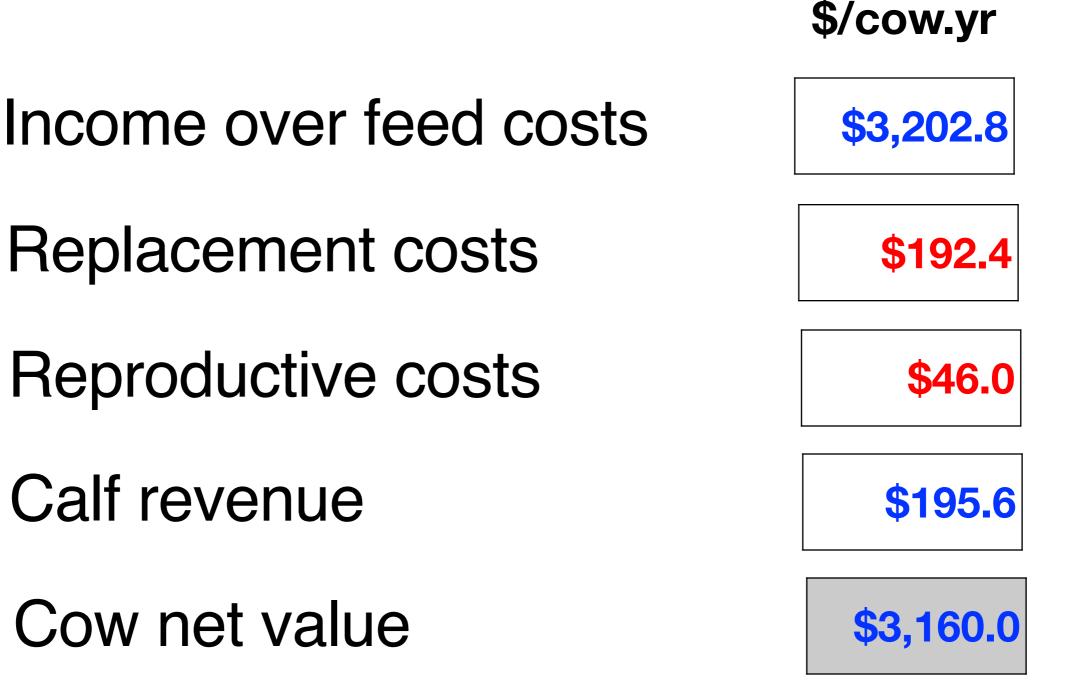

Heat bred before 1st TAI service, %

- CR before 1st TAI service, %
- CR 1st TAI service


Heat bred after 1st TAI service, %

CR after 1st HD services, %


CR 2nd+ TAI services


Alternative reproductive program UWCU Repro\$

Alternative reproductive program UWCU Repro\$

Reproductive program - alternative Jul15

Alternative reproductive program UWCU Repro\$

10% more 21-d PR ↓

+\$200/cow per year!

UW-CU Dairy Repro\$ State-of-the-art reproduction DST

Daily simulation

•All herd's cow states

Accommodates all reproductive programs

- TAI
- •HD
- •TAI + HD

S

Calculates economic net return

•Most important parameters affected buy reproductive performance

Gives additional important information

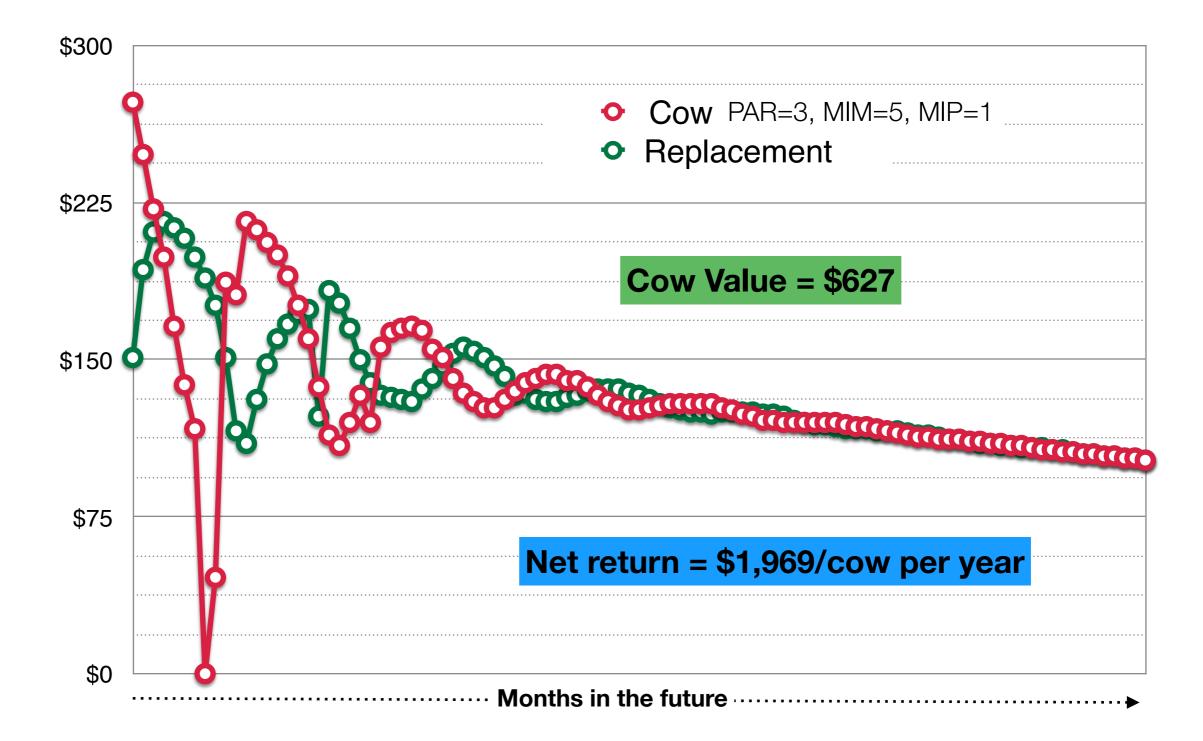
- •Herd structure
- Heifer balance

The Economic Value of a Cow

Discounted future net return of a cow

Compared to a replacement

General interpretation

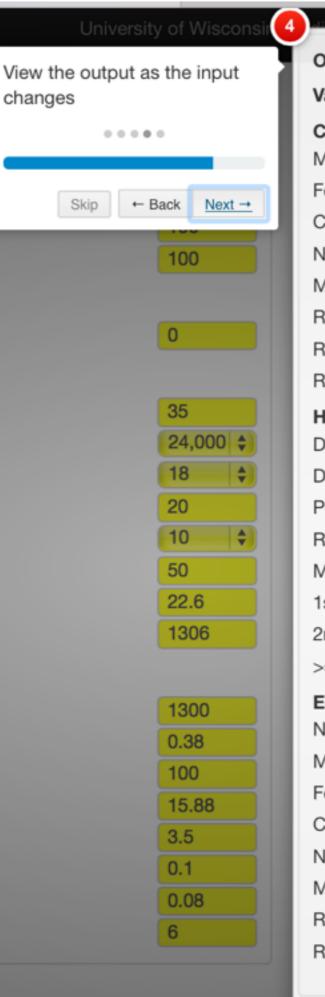

Positive (+) cow value = <u>keep</u>
Negative (-) cow value = <u>replace</u>

Expected future net returns Economic average net return

The Economic Value of a Dairy Cow

V.E. Cabrera, UW-Madison Dairy Science

	English Spanish	Units: US English US Metric UK Help !	
	Overview Single Cow Analysis Herd Analysis		
	INPUTS - Edit Values in This Block Evaluated Cow Variables	OUTPUTS - Interactive Results Value of the Cow, \$ 627	alue of a
	Current Lactation Current Months after Calving Current Months in Pregnancy Expected Milk Production Rest of Lactation, % Expected Milk Production Next Lactations, % Replacement Cow Variable Expected genetic improvement, % additional milk	3Compared Against a Replacement, \$5\$1\$1\$Feed Cost, \$-157100Calf Value, \$100Non-reproductive Cull, \$100Non-reproductive Cull, \$100Peproductive Cull, \$12Peproduction Costs, \$12Peproduction Costs, \$	SOW
Enter Data	Herd Production and Reproduction Variables Herd Turnover Ratio, %/year Rolling Herd Average, lb/cow per year 21-d Pregnancy Rate, % Reproduction Cost, \$/cow per month Last Month After Calving to Breed a Cow Do-not-Breed Cow Minimum Milk, lb/day	35 Herd Structure at Steady State 704 35 Herd Structure at Steady State 224 18 Days in milk 224 20 Percent of Pregnant 52 10 Reproductive Culling, % 8 50 Mortality, % 3	ind sults
	Pregnancy Loss after 35 Days Pregnant, % Average Cow Body Weight, Ib Herd Economic Variables Replacement Cost, \$/cow Salvage Value, \$/lb live weight Calf Value, \$/calf Milk Price, \$/cwt Milk Butterfat, % Feed Cost Lactating Cows, \$/lb dry matter Feed Cost Dry Cows, \$/lb dry matter Interest Rate, %/year	>= 3rd Lactation, % 30 1300 Economics of an Average Cow, \$/year 0.38 Net Return, \$ 100 Milk Sales, \$ 15.88 Feed Cost, \$ 3.5 Calf Sales, \$ 0.1 Non-Reprod. Culling Cost, \$ 0.08 Mortality Cost, \$ 6 Reproductive Culling Cost, \$	Net leturn of a cow
Cabrera, 2	012 JDS 95:4683-4698	Reproductive Cost, \$ -80	


Ent Da

	Sw Dairy Management 100			
Enter the input parameters.	INPUTS - Edit Values in This Block		OUTPUTS - Interactive Results	
	Evaluated Cow Variables		Value of the Cow, \$	627
	Current Lactation	3 🛟	Compared Against a Replacement, \$	
	Current Months after Calving	5 🛟	Milk Sales, \$	147
Skip ← Back <u>Next</u> →	Current Months in Pregnancy	1 \$	Feed Cost, \$	-157
	Expected Milk Production Rest of Lactation, %	100	Calf Value, \$	26
	Expected Milk Production Next Lactations, %	100	Non-reproductive Cull, \$	-126
			Mortality Cost, \$	-24
	Replacement Cow Variable		Reproductive Cull, \$	12
	Expected genetic improvement, % additional milk	0	Reproduction Costs, \$	45
	Herd Production and Reproduction Variables		Replacement Transaction, \$	704
	Herd Turnover Ratio, %/year	35	Herd Structure at Steady State	
	Rolling Herd Average, lb/cow per year	24,000 \$	Days in milk	224
	21-d Pregnancy Rate, %	18 🗘	Days to Conception	122
	Reproduction Cost, \$/cow per month	20	Percent of Pregnant	52
	Last Month After Calving to Breed a Cow	10 🗘	Reproductive Culling, %	8
	Do-not-Breed Cow Minimum Milk, Ib/day	50	Mortality, %	3
	Pregnancy Loss after 35 Days Pregnant, %	22.6	1st Lactation, %	43
	Average Cow Body Weight, Ib	1306	2nd Lactation, %	27
	Herd Economic Variables		>= 3rd Lactation, %	30
	Replacement Cost, \$/cow	1300	Economics of an Average Cow, \$/year	
	Salvage Value, \$/Ib live weight	0.38	Net Return, \$	1969
	Calf Value, \$/calf	100	Milk Sales, \$	3806
	Milk Price, \$/cwt	15.88	Feed Cost, \$	-1522
	Milk Butterfat, %	3.5	Calf Sales, \$	60
	Feed Cost Lactating Cows, \$/lb dry matter	0.1	Non-Reprod. Culling Cost, \$	-198
	Feed Cost Dry Cows, \$/lb dry matter	0.08	Mortality Cost, \$	-38
	Interest Rate, %/year	6	Reproductive Culling Cost, \$	-59
			Reproductive Cost, \$	-80

User defines cow and herd parameters including cow state, culling risk, reproduction, and economics according to farm

Results are instantaneous

For example the value of the cow is \$627 for an average cow in third lactation, 5 months after calving and 1 month pregnant

nilk

diann IIM Eutopoinn Doine Coinne	Contrat
OUTPUTS - Interactive Results	
Value of the Cow, \$	627
Compared Against a Replacement, \$	
Milk Sales, \$	147
Feed Cost, \$	-157
Calf Value, \$	26
Non-reproductive Cull, \$	-126
Mortality Cost, \$	-24
Reproductive Cull, \$	12
Reproduction Costs, \$	45
Replacement Transaction, \$	704
Herd Structure at Steady State	
Days in milk	224
Days to Conception	122
Percent of Pregnant	52
Reproductive Culling, %	8
Mortality, %	3
1st Lactation, %	43
2nd Lactation, %	27
>= 3rd Lactation, %	30
Economics of an Average Cow, \$/year	
Net Return, \$	1969
Milk Sales, \$	3806
Feed Cost, \$	-1522
Calf Sales, \$	60
Non-Reprod. Culling Cost, \$	-198
Mortality Cost, \$	-38
Reproductive Culling Cost, \$	-59
Reproductive Cost, \$	-80

The value of a new pregnancy

How much more \$ when a cow becomes pregnant?

Difference in cow value:

- •Cow **becoming** pregnant
- •Cow remaining non-pregnant

Value of a new pregnancy = **+\$100**

The cost of a pregnancy loss

How much less \$ when a cow aborts?

Difference in cow value:

- •Cow being pregnant
- •Cow losing pregnancy

Cost of a pregnancy loss = **-\$500**

The value of a pregnancy Cost of an abortion

Evaluated Cow Variables

Current Lactation Current Months after Calving Current Months in Pregnancy Expected Milk Production Rest of Lactation, % Expected Milk Production Next Lactations, %

Compared Against a Replacement, \$

Value of the Cow. \$

	Milk Sales, \$
	Feed Cost, \$
3 ¢	Calf Value, \$
0	Non-reproductive Cull, \$
100	Mortality Cost, \$
100	Reproductive Cull, \$
	Reproduction Costs, \$

Replacement Transaction, \$

Value of the Cow, \$

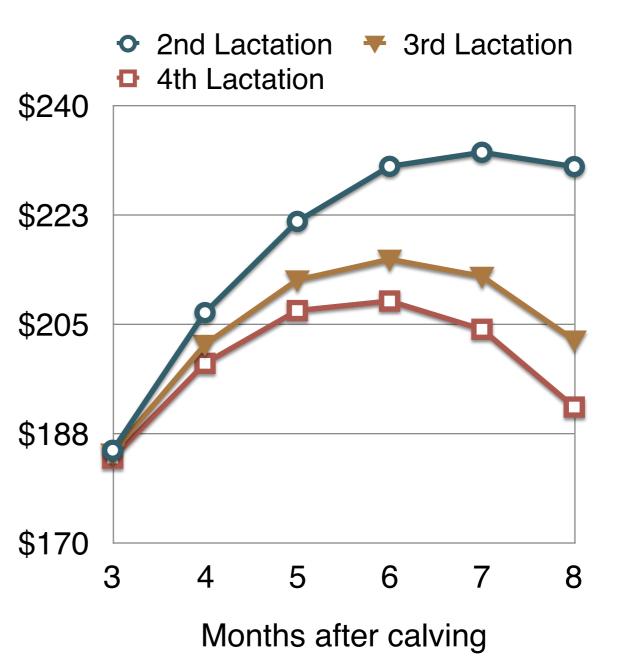
100
-136
0
-174
-33
-42
-3
704

414

Evaluated Cow Variables

Current Lactation Current Months after Calving Current Months in Pregnancy Expected Milk Production Rest of Lactation, % Expected Milk Production Next Lactations, %

627


Compared Against a Replacement, \$	
Milk Sales, \$	147
Feed Cost, \$	-157
Calf Value, \$	26
Non-reproductive Cull, \$	-126
Mortality Cost, \$	-24
Reproductive Cull, \$	12
Reproduction Costs, \$	45
Replacement Transaction, \$	704
one month pregnancy	v for

\$627-\$414=\$213 is the value of one month pregnancy for this specific cow. Its abortion cost would be -\$213

Dynamics of the value of a new pregnancy

Value of pregnancy

- Increases towards midlactation
- Decreases towards late lactation

Cost of an open day

Evaluated Cow Variables

- Current Lactation Current Months after Calving Current Months in Pregnancy Expected Milk Production Rest of Lactation, %
- Expected Milk Production Next Lactations, %

Evaluated	Cow	Variables	
-----------	-----	-----------	--

Current Lactation Current Months after Calving Current Months in Pregnancy Expected Milk Production Rest of Lactation, %

\$113

Expected Milk Production Next Lactations, %

7 ¢ 0 ¢ 100	2 🛟	
0 ¢ 100	7	
100	0 \$	
	100	
100	100	

6

100

100

Value of the Cow, \$	
Compared Against a Replacement, \$	
Milk Sales, \$	
Feed Cost, \$	
Calf Value, \$	
Non-reproductive Cull, \$	
Mortality Cost, \$	
Reproductive Cull, \$	
Depreduction Costs	

Reproduction Costs, \$ Replacement Transaction, \$

Value of the Cow, \$

169

282

-67

-114

-146

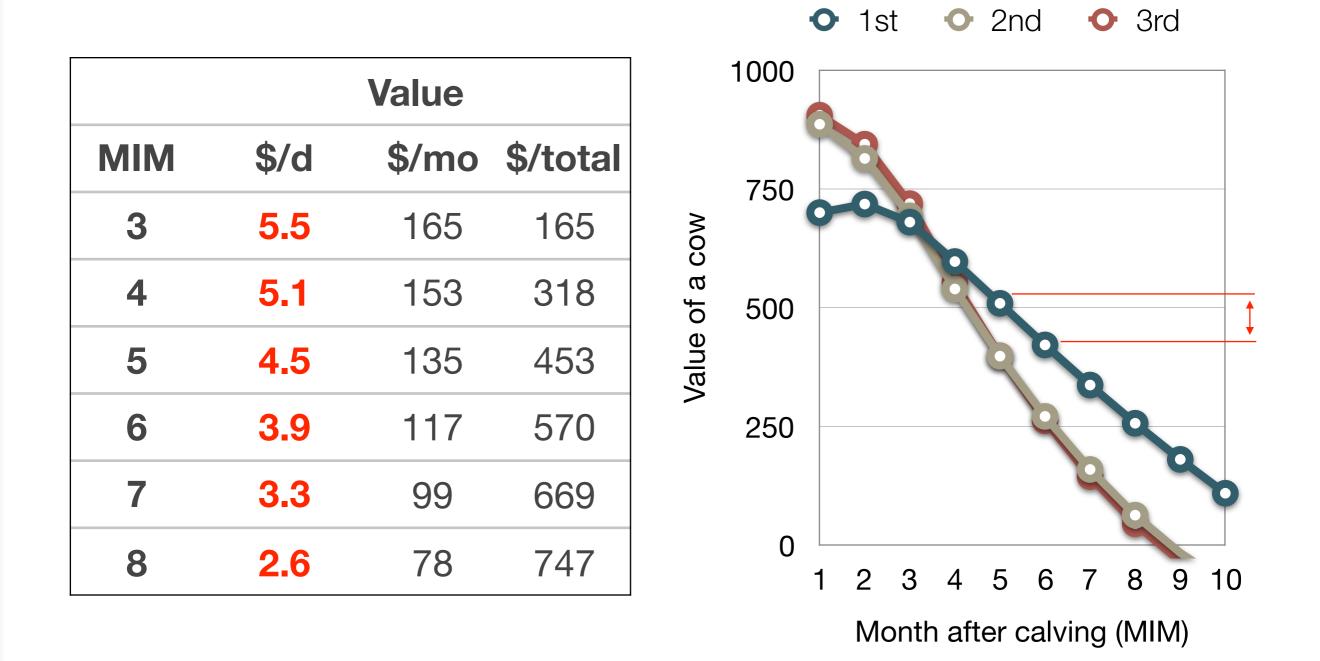
-28

-67

704

1

-1


Compared Against a Replacement, \$

	Milk Sales, \$
) \$	Feed Cost, \$
\$	Calf Value, \$
	Non-reproductive Cull, \$
	Mortality Cost, \$
	Reproductive Cull, \$
	Reproduction Costs, \$
	Replacement Transaction, \$

-154
-90
-4
-163
-31
-97
3
704
P

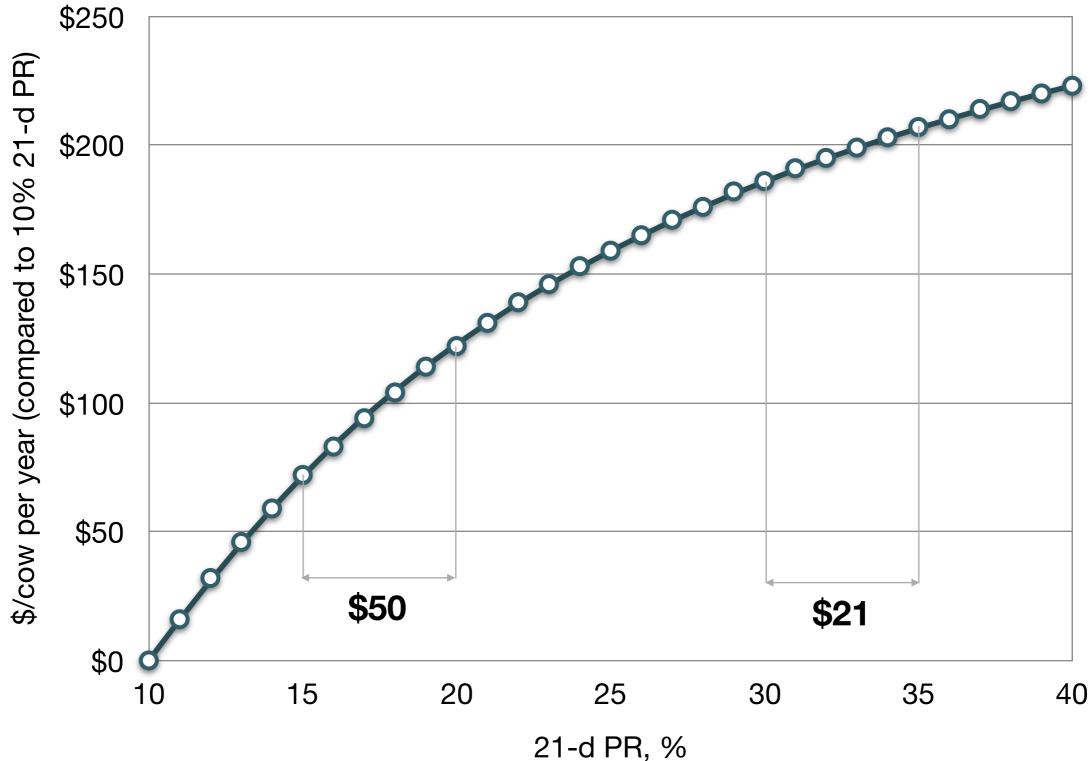
(\$282-\$169)/30=\$3.76/day is the cost of an open day for this cow of 2nd lactation between 6 and 7 MIM

Cost of a day open 3rd lactation cow

The Economic Value of a Cow

What is the economic value of changing 21-d PR?

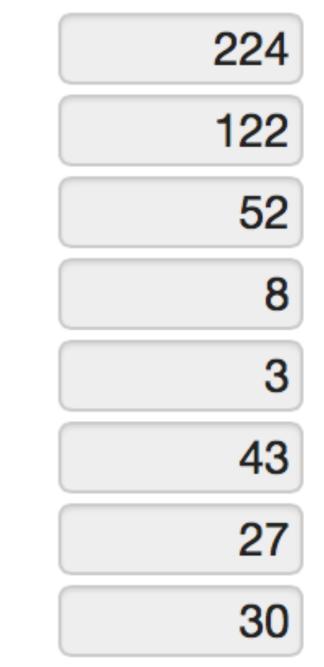
Herd Production and Reproduction Variables Herd Turnover Ratio, %/year Rolling Herd Average, lb/cow per year 21-d Pregnancy Rate, % Reproduction Cost, \$/cow per month Last Month After Calving to Breed a Cow Do-not-Breed Cow Minimum Milk, lb/day Pregnancy Loss after 35 Days Pregnant, % Average Cow Body Weight, lb Herd Economic Variables


Replacement Cost, \$/cow Salvage Value, \$/lb live weight Calf Value, \$/calf Milk Price, \$/cwt Milk Butterfat, % Feed Cost Lactating Cows, \$/lb dry matter Feed Cost Dry Cows, \$/lb dry matter Interest Rate, %/year

35	
24,000	÷
18	-
20	
10	\$
50	
22.6	
1306	
1300	
0.38	
100	
15.88	
3.5	
0.1	
0.08	
6	

Herd Structure at Steady State	
Days in milk	224
Days to Conception	122
Percent of Pregnant	52
Reproductive Culling, %	8
Mortality, %	3
1st Lactation, %	43
2nd Lactation, %	27
>= 3rd Lactation, %	30
Economics of an Average Cow, \$/year	
Economics of an Average Cow, \$/year Net Return, \$	1969
	1969 3806
Net Return, \$	
Net Return, \$ Milk Sales, \$	3806
Net Return, \$ Milk Sales, \$ Feed Cost, \$	3806 -1522
Net Return, \$ Milk Sales, \$ Feed Cost, \$ Calf Sales, \$	3806 -1522 60
Net Return, \$ Milk Sales, \$ Feed Cost, \$ Calf Sales, \$ Non-Reprod. Culling Cost, \$	3806 -1522 60 -198
Net Return, \$ Milk Sales, \$ Feed Cost, \$ Calf Sales, \$ Non-Reprod. Culling Cost, \$ Mortality Cost, \$	3806 -1522 60 -198 -38

Cabrera, 2012 JDS 95:4683-4698


Value of improving 21-d PR Herd 21-d PR

Herd structure according to repro

18% 21-d PR

Herd Structure at Steady State Days in milk Days to Conception Percent of Pregnant Reproductive Culling, % Mortality, % 1st Lactation, % 2nd Lactation, % >= 3rd Lactation, %

Importance of the cow value Critical economic implications

Optimal management

•Keep or replace

Important information

- Value of pregnancy
- Cost of pregnancy loss
- Cost of a day open

Crucial decisions

- Breed or not breed
- •Breed with special semen
- •Other **reproductive** decisions...

Critical economic values

•Net return according to reproductive performance

